Combined biomaterial signals stimulate communications between bone marrow stromal cell and endothelial cell
نویسندگان
چکیده
It has been widely reported that chemical, structural or mechanical signals of biomaterials can impact cell behaviors and tissue regeneration, but few studies have investigated the effects of biomaterial signals on cell–cell interactions although communications between cells are critical for tissue regeneration. Our recent studies have shown that chemical signals of bioglass (BG) can stimulate communications in bone marrow stromal cells and endothelial cells, which results in enhanced angiogenesis and osteogenesis. Considering the facts that, in vivo, different biomaterial signals may simultaneously affect cell–cell interactions, in this study, we proposed that combining chemical and structural signals of biomaterials may further improve cell–cell interactions. Results proved that combined structural signals of aligned electrospun nanofibers and chemical signals of BG ionic products could significantly stimulate interactions between co-cultured bone marrow stromal cells and endothelial cells through both of paracrine effects and junctional communications as compared to single type of biomaterial signals. Further study indicated that both chemical signals of BG and structural signals of electrospun nanofibers played important role in stimulating paracrine effects while for improving junctional communication, structural signals of electrospun nanofibers played a more important role than chemical signals of BG, which resulted in enhanced vascularization and osteogenic differentiation in co-cultures. Therefore, applying combined biomaterial signals to activate cell–cell interactions is a promising strategy for enhancing tissue regeneration.
منابع مشابه
Bone marrow stromal cells and their application in neural injuries
Background: This article reviews experimental and clinical studies in which neural injuries repaired with bone marrow stromal cells. History: Bone marrow contains two kinds of stem cells: hematopoietic and nonhematopoietic (stromal) stem cell. In vitro studies indicate that bone marrow stromal cells have the capacity of differentiation into other cells (such as neural cell) under treatment wit...
متن کاملبررسی اثر آگونیست -آدرنرژیکی ایزوپروترنول بر بیان miR-886-3p و miR-23a در سلولهای بنیادی مزانشیمی مغز استخوان انسان
Background and Objective: Mobilization of Hematopoietic Stem Cells (HSCs) for transplantation and the importance of -adrenergic signals in induction of this process have been well investigated. However, little is known about the role of -adrenergic signals in mobilization of HSCs and factors influenced by these signals. The Chemokine Stromal Derived Factor -1 (SDF-1) which is expressed by hum...
متن کاملInduction of Mineralized Nodule Formation in Rat Bone Marrow Stromal Cell Cultures by Silk Fibroin
Background: Silk fibroin is a suitable protein for osteogenesis by inducing markers of bone formation in the cultures of osteoblasts, so we examined the ability of this protein to induce mineralized nodules in the rat bone marrow stromal cell cultures. Methods: Bone marrow stromal cells obtained from 4 to 6 weeks old Spruge-Dawely male rats were grown in primary culture for seven days and then ...
متن کاملMultiple Myeloma Bone Marrow Mesenchymal Stromal Cells Inhibit CD8+ T Cell Function in a Process that May Implicate Fibroblast Activation Protein α
Background: Multiple myeloma (MM) is a malignant plasma cell proliferative disorder with limited immunotherapy treatment because of T cell dysfunction. Objective: To investigate the immunomodulatory function of bone marrow mesenchymal stromal cells (MM-BMSCs) on CD8+ T cells. Methods: Proliferation and cytotoxicity were detected by c...
متن کاملComparison of Transplantation of Bone Marrow Stromal Cells (BMSC) and Stem Cell Mobilization by Granulocyte Colony Stimulating Factor after Traumatic Brain Injury in Rat
Background: Recent clinical studies of treating traumatic brain injury (TBI) with autologous adult stem cells led us to compare effect of intravenous injection of bone marrow mesenchymal stem cells (BMSC) and bone marrow hematopoietic stem cell mobilization, induced by granulocyte colony stimulating factor (G-CSF), in rats with a cortical compact device. Methods: Forty adult male Wistar rats w...
متن کامل